Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Nat Commun ; 15(1): 3688, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693107

RESUMEN

Graphene photodetectors have exhibited high bandwidth and capability of being integrated with silicon photonics (SiPh), holding promise for future optical communication devices. However, they usually suffer from a low photoresponsivity due to weak optical absorption. In this work, we have implemented SiPh-integrated twisted bilayer graphene (tBLG) detectors and reported a responsivity of 0.65 A W-1 for telecom wavelength 1,550 nm. The high responsivity enables a 3-dB bandwidth of >65 GHz and a high data stream rate of 50 Gbit s-1. Such high responsivity is attributed to the enhanced optical absorption, which is facilitated by van Hove singularities in the band structure of high-mobility tBLG with 4.1o twist angle. The uniform performance of the fabricated photodetector arrays demonstrates a fascinating prospect of large-area tBLG as a material candidate for heterogeneous integration with SiPh.

2.
Adv Mater ; : e2402000, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738693

RESUMEN

The disparity between growth substrates and application-specific substrates can be mediated by reliable graphene transfer, the lack of which currently strongly hinders the graphene applications. Conventionally, the removal of soft polymers, that support the graphene during the transfer, would contaminate graphene surface, produce cracks, and leave unprotected graphene surface sensitive to airborne contaminations. In this work, we found that polyacrylonitrile (PAN) can function as polymer medium for transferring wafer-size graphene, and encapsulating layer to deliver high-performance graphene devices. Therefore, PAN, that is compatible with device fabrication, does not need to be removed for subsequent applications. We achieved the crack-free transfer of 4-inch graphene onto SiO2/Si wafers, and the wafer-scale fabrication of graphene-based field-effect transistor (FET) arrays with no observed clear doping, uniformly high carrier mobility (∼11,000 cm2 V-1 s-1) and long-term stability at room temperature. Our work presents new concept for designing the transfer process of two-dimensional (2D) materials, in which multifunctional polymer can be retained, and offers a reliable method for fabricating wafer-scale devices of 2D materials with outstanding performance. This article is protected by copyright. All rights reserved.

3.
Nat Commun ; 15(1): 3622, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684741

RESUMEN

Vertical semiconducting fins integrated with high-κ oxide dielectrics have been at the centre of the key device architecture that has promoted advanced transistor scaling during the last decades. Single-fin channels based on two-dimensional (2D) semiconductors are expected to offer unique advantages in achieving sub-1 nm fin-width and atomically flat interfaces, resulting in superior performance and potentially high-density integration. However, multi-fin structures integrated with high-κ dielectrics are commonly required to achieve higher electrical performance and integration density. Here we report a ledge-guided epitaxy strategy for growing high-density, mono-oriented 2D Bi2O2Se fin arrays that can be used to fabricate integrated 2D multi-fin field-effect transistors. Aligned substrate steps enabled precise control of both nucleation sites and orientation of 2D fin arrays. Multi-channel 2D fin field-effect transistors based on epitaxially integrated 2D Bi2O2Se/Bi2SeO5 fin-oxide heterostructures were fabricated, exhibiting an on/off current ratio greater than 106, high on-state current, low off-state current, and high durability. 2D multi-fin channel arrays integrated with high-κ oxide dielectrics offer a strategy to improve the device performance and integration density in ultrascaled 2D electronics.

4.
J Am Chem Soc ; 146(11): 7324-7331, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445458

RESUMEN

The discovery of superconductivity in twisted bilayer graphene has reignited enthusiasm in the field of flat-band superconductivity. However, important challenges remain, such as constructing a flat-band structure and inducing a superconducting state in materials. Here, we successfully achieved superconductivity in Bi2O2Se by pressure-tuning the flat-band electronic structure. Experimental measurements combined with theoretical calculations reveal that the occurrence of pressure-induced superconductivity at 30 GPa is associated with a flat-band electronic structure near the Fermi level. Moreover, in Bi2O2Se, a van Hove singularity is observed at the Fermi level alongside pronounced Fermi surface nesting. These remarkable features play a crucial role in promoting strong electron-phonon interactions, thus potentially enhancing the superconducting properties of the material. These findings demonstrate that pressure offers a potential experimental strategy for precisely tuning the flat band and achieving superconductivity.

5.
Nat Commun ; 15(1): 1938, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431679

RESUMEN

Phonon splitting of the longitudinal and transverse optical modes (LO-TO splitting), a ubiquitous phenomenon in three-dimensional polar materials, will break down in two-dimensional (2D) polar systems. Theoretical predictions propose that the LO phonon in 2D polar monolayers becomes degenerate with the TO phonon, displaying a distinctive "V-shaped" nonanalytic behavior near the center of the Brillouin zone. However, the full experimental verification of these nonanalytic behaviors has been lacking. Here, using monolayer hexagonal boron nitride (h-BN) as a prototypical example, we report the comprehensive and direct experimental verification of the nonanalytic behavior of LO phonons by inelastic electron scattering spectroscopy. Interestingly, the slope of the LO phonon in our measurements is lower than the theoretically predicted value for a freestanding monolayer due to the screening of the Cu foil substrate. This enables the phonon polaritons in monolayer h-BN/Cu foil to exhibit ultra-slow group velocity (~5 × 10-6 c, c is the speed of light) and ultra-high confinement (~ 4000 times smaller wavelength than that of light). These exotic behaviors of the optical phonons in h-BN presents promising prospects for future optoelectronic applications.

6.
Proc Natl Acad Sci U S A ; 121(5): e2309384121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252835

RESUMEN

High-quality specimen preparation plays a crucial role in cryo-electron microscopy (cryo-EM) structural analysis. In this study, we have developed a reliable and convenient technique called the graphene sandwich method for preparing cryo-EM specimens. This method involves using two layers of graphene films that enclose macromolecules on both sides, allowing for an appropriate ice thickness for cryo-EM analysis. The graphene sandwich helps to mitigate beam-induced charging effect and reduce particle motion compared to specimens prepared using the traditional method with graphene support on only one side, therefore improving the cryo-EM data quality. These advancements may open new opportunities to expand the use of graphene in the field of biological electron microscopy.


Asunto(s)
Grafito , Microscopía por Crioelectrón , Exactitud de los Datos , Movimiento (Física)
7.
Adv Mater ; : e2308802, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878366

RESUMEN

Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.

8.
Phys Rev Lett ; 131(11): 116602, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774282

RESUMEN

Phonons, as the most fundamental emergent bosons in condensed matter systems, play an essential role in the thermal, mechanical, and electronic properties of crystalline materials. Recently, the concept of topology has been introduced to phonon systems, and the nontrivial topological states also exist in phonons due to the constraint by the crystal symmetry of the space group. Although the classification of various topological phonons has been enriched theoretically, experimental studies were limited to several three-dimensional (3D) single crystals with inelastic x-ray or neutron scatterings. The experimental evidence of topological phonons in two-dimensional (2D) materials is absent. Here, using high-resolution electron energy loss spectroscopy following our theoretical predictions, we directly map out the phonon spectra of the atomically thin graphene in the entire 2D Brillouin zone, and observe two nodal-ring phonons and four Dirac phonons. The closed loops of nodal-ring phonons and the conical structure of Dirac phonons in 2D momentum space are clearly revealed by our measurements, in nice agreement with our theoretical calculations. The ability of 3D mapping (2D momentum space and energy space) of phonon spectra opens up a new avenue to the systematic identification of the topological phononic states. Our work lays a solid foundation for potential applications of topological phonons in superconductivity, dynamic instability, and phonon diode.

9.
Sci Adv ; 9(31): eadf8484, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531436

RESUMEN

Transferred graphene provides a promising III-nitride semiconductor epitaxial platform for fabricating multifunctional devices beyond the limitation of conventional substrates. Despite its tremendous fundamental and technological importance, it remains an open question on which kind of epitaxy is preferred for single-crystal III-nitrides. Popular answers to this include the remote epitaxy where the III-nitride/graphene interface is coupled by nonchemical bonds, and the quasi-van der Waals epitaxy (quasi-vdWe) where the interface is mainly coupled by covalent bonds. Here, we show the preferred one on wet-transferred graphene is quasi-vdWe. Using aluminum nitride (AlN), a strong polar III-nitride, as an example, we demonstrate that the remote interaction from the graphene/AlN template can inhibit out-of-plane lattice inversion other than in-plane lattice twist of the nuclei, resulting in a polycrystalline AlN film. In contrast, quasi-vdWe always leads to single-crystal film. By answering this long-standing controversy, this work could facilitate the development of III-nitride semiconductor devices on two-dimensional materials such as graphene.

10.
Nat Commun ; 14(1): 3199, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268632

RESUMEN

Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.

11.
ACS Nano ; 17(11): 10142-10151, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37267416

RESUMEN

The characterization of interlayer coupling in two-dimensional van der Waals heterostructures (vdWHs) is essential to understand their quantum behaviors and structural functionalities. Interlayer shear and layer-breathing (LB) phonons carry rich information on interlayer interaction, but they are usually too weak to be detected via standard Raman spectroscopy due to the weak electron-phonon coupling (EPC). Here, we report a universal strategy to enhance LB modes of vdWHs based on twisted bilayer graphene (tBLG). In both tBLG/hBN and tBLG/MoS2 vdWHs, the resonantly excited electrons in tBLG can strongly couple to LB phonons extended over the entire layers in the vdWHs, whose resonance condition is tunable by the twist angle of tBLG. In vdWHs containing twisted graphene layers with multiple twisted interfaces, the EPC of LB phonons coming from the collective LB vibrations of entire heterostructure layers can be tuned by resonant excitation of programmable van Hove singularities according to each twisted interface. The universality and tunability of enhanced LB phonons by tBLG make it a promising method to investigate EPC and interlayer interaction in related vdWHs.

12.
Nanoscale Horiz ; 8(8): 1073-1081, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37345335

RESUMEN

Effectively reducing the voltage loss in organic solar cells (OSCs) is critical to improving the power conversion efficiency (PCE) of OSCs. In this study, highly efficient ternary OSCs were constructed by adding a non-fullerene acceptor Qx2 with a high open-circuit voltage (VOC) and low energy loss (Eloss) into PM6:m-BTP-PhC6 based binary devices. The third component Qx2 shows slightly complementary absorption with m-BTP-PhC6 and also optimizes the molecular packing, orientation, and morphology of the active layer. Moreover, the incorporation of Qx2 reduced the energetic disorder and improved the electroluminescence quantum efficiency, which suppresses the Eloss and further leads to a higher VOC than the PM6:m-BTP-PhC6 binary blend. Consequently, synergetic enhancements of VOC, short circuit current (JSC), and fill factor (FF) are realized, resulting in the PCE of 18.60%. This work shows that the selection of the appropriate third component has positive implications for reducing Eloss and improving the PCE of OSCs.

14.
J Am Chem Soc ; 145(14): 8073-8081, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37011903

RESUMEN

With the development of cryo-electron microscopy (cryo-EM), high-resolution structures of macromolecules can be reconstructed by the single particle method efficiently. However, challenges may still persist during the specimen preparation stage. Specifically, proteins tend to adsorb at the air-water interface and exhibit a preferred orientation in vitreous ice. To overcome these challenges, we have explored dual-affinity graphene (DAG) modified with two different affinity ligands as a supporting material for cryo-EM sample preparation. The ligands can bind to distinct sites on the corresponding tagged particles, which in turn generates various orientation distributions of particles and prevents the adsorption of protein particles onto the air-water interface. As expected, the DAG exhibited high binding specificity and affinity to target macromolecules, resulting in more balanced particle Euler angular distributions compared to single functionalized graphene on two different protein cases, including the SARS -CoV-2 spike glycoprotein. We anticipate that the DAG grids will enable facile and efficient three-dimensional (3D) reconstruction for cryo-EM structural determination, providing a robust and general technique for future studies.


Asunto(s)
COVID-19 , Grafito , Humanos , Microscopía por Crioelectrón/métodos , Grafito/química , Ligandos , Agua/química , Sustancias Macromoleculares/química
15.
Adv Mater ; 35(18): e2209755, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37005372

RESUMEN

The controlled preparation of single-crystal Cu(111) is intensively investigated owing to the superior properties of Cu(111) and its advantages in synthesizing high-quality 2D materials, especially graphene. However, the accessibility of large-area single-crystal Cu(111) is still hindered by time-consuming, complicated, and high-cost preparation methods. Here, the oxidization-temperature-triggered rapid preparation of large-area single-crystal Cu(111) in which an area up to 320 cm2 is prepared within 60 min, and where low-temperature oxidization of polycrystalline Cu foil surface plays a vital role, is reported. A mechanism is proposed, by which the thin Cux O layer transforms to a Cu(111) seed layer on the surface of Cu to induce the formation of a large-area Cu(111) foil, which is supported by both experimental data and molecular dynamics simulation results. In addition, a large-size high-quality graphene film is synthesized on the single-crystal Cu(111) foil surface and the graphene/Cu(111) composites exhibit enhanced thermal conductivity and ductility compared to their polycrystalline counterpart. This work, therefore, not only provides a new avenue toward the monocrystallinity of Cu with specific planes but also contributes to improving the mass production of high-quality 2D materials.

17.
Adv Mater ; 35(29): e2300621, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37027890

RESUMEN

Recently, scalable production of large-area graphene films on metal foils with promising qualities is successfully achieved by eliminating grain boundaries, wrinkles, and adlayers. The transfer of graphene from growth metal substrates onto functional substrates remains one inescapable obstacle on the road to the real commercial applications of chemical vaport deposition (CVD) graphene films. Current transfer methods still require time-consuming chemical reactions, which hinders its mass production, and produces cracks and contamination that strongly impede performance reproducibility. Therefore, graphene transfer techniques with fine intactness and cleanness of transferred graphene, and improved production efficiency would be ideal for the mass production of graphene films on destination substrates. Herein, through the engineering of interfacial forces enabled by sophisticated design of transfer medium, the crack-free and clean transfer of 4-inch-sized graphene wafers onto silicon wafers within only 15 min is realized. The reported transfer method is an important leap over the long-lasting obstacle of the batch-scale graphene transfer without degrading the quality of graphene, bringing the graphene products close to the real applications.

18.
Nat Mater ; 22(7): 832-837, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36894772

RESUMEN

The scaling of silicon-based transistors at sub-ten-nanometre technology nodes faces challenges such as interface imperfection and gate current leakage for an ultrathin silicon channel1,2. For next-generation nanoelectronics, high-mobility two-dimensional (2D) layered semiconductors with an atomic thickness and dangling-bond-free surfaces are expected as channel materials to achieve smaller channel sizes, less interfacial scattering and more efficient gate-field penetration1,2. However, further progress towards 2D electronics is hindered by factors such as the lack of a high dielectric constant (κ) dielectric with an atomically flat and dangling-bond-free surface3,4. Here, we report a facile synthesis of a single-crystalline high-κ (κ of roughly 16.5) van der Waals layered dielectric Bi2SeO5. The centimetre-scale single crystal of Bi2SeO5 can be efficiently exfoliated to an atomically flat nanosheet as large as 250 × 200 µm2 and as thin as monolayer. With these Bi2SeO5 nanosheets as dielectric and encapsulation layers, 2D materials such as Bi2O2Se, MoS2 and graphene show improved electronic performances. For example, in 2D Bi2O2Se, the quantum Hall effect is observed and the carrier mobility reaches 470,000 cm2 V-1 s-1 at 1.8 K. Our finding expands the realm of dielectric and opens up a new possibility for lowering the gate voltage and power consumption in 2D electronics and integrated circuits.


Asunto(s)
Grafito , Silicio , Electrónica , Semiconductores
19.
Langmuir ; 39(14): 4975-4983, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995779

RESUMEN

Hydrogen isotope separation has been effectively achieved electrochemically by passage of gaseous H2/D2 through graphene/Nafion composite membranes. Nevertheless, deuteron nearly does not exist in the form of gaseous D2 in nature but as liquid water. Thus, it is a more feasible way to separate and enrich deuterium from water. Herein, we have successfully transferred monolayer graphene to a rigid and porous polymer substrate, PITEM (polyimide track-etched membrane), which could avoid the swelling problem of the Nafion substrate as well as keep the integrity of graphene. Meanwhile, defects in the large area of CVD graphene could be successfully repaired by interfacial polymerization resulting in a high separation factor. Moreover, a new model was proposed for the proton transport mechanism through monolayer graphene based on the kinetic isotope effect (KIE). In this model, graphene plays a significant role in the H/D separation process by completely breaking the O-H/O-D bond, which can maximize the KIE, leading to increased H/D separation performance. This work suggests a promising application for using monolayer graphene in the industry and proposes a pronounced understanding of proton transport in graphene.

20.
J Virol ; 97(4): e0182922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943056

RESUMEN

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.


Asunto(s)
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virales , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/metabolismo , Estructura Cuaternaria de Proteína , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Microscopía por Crioelectrón , Suramina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...